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Abstract

In this paper, we deal with the problem of measuring distances
between language entities, such as sentences, documents and
topics derived from textual corpora. For such a task, we can
rely on measures of semantic distances among words, such as
those given by word-embeddings, and extrapolate them to deal
with more complex entities. We show that this approach is par-
ticularly convenient when dealing with entities from heteroge-
neous corpora, since otherwise the presence of different vocab-
ularies may lead to meaningless distance values. As a prelimi-
nary validity test, we show the appropriateness of our proposal
by matching topics learned from NSF funded projects in differ-
ent time intervals. Other use cases that could benefit from this
approach, including the development of semantic distances for
corpora using different languages, are discussed and will be the
subject of future research.
Index Terms: Heterogeneous corpora, word embeddings, topic
models, matching

1. Introduction
During the past decades many applications were created and
evolved to manage digitally stored knowledge. Books, arti-
cles, webpages, opinions, services and a large etcetera are be-
ing collected and processed. Search engines, digital libraries,
researchers and other agents face the problem of dealing with
a crescent collection of human language and trying to extract
relevant conclusions about its content.

In this paper, we deal with the problem of measuring the
semantic similarity among different language entities, namely
documents and topics (as defined below), paying special atten-
tion to the case in which these belong to heterogeneous corpora,
in the sense that the vocabularies that characterize the corpora
differ in the component words or their statistical use. This in-
cludes as a special case learning similarities between documents
and topics in different languages.

Topic models characterize and cluster documents according
to their implicit themes, in an unsupervised manner, assuming
a latent generative model. One of the first such models was
Latent Semantic Analysis [1], but the popularization of these
techniques is probably due to Latent Dirichlet Allocation (LDA)
model [2]. LDA assumes hidden structures between random
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variables modeling the word appearance as a sample of a topic
distribution, and the documents as a mixture of topics.

There are many newer techniques, which sometimes differ
on its latent model, whose aim is to face specific problems, or
even the original algorithm is applied in unexpected contexts.
Examples are found in genetics [3], image classification [4] or
Information Retrieval [5]. Some variations that were proposed
try to cover more complex structures not considered in the orig-
inal techniques, like topic correlation [6], topic hierarchy [7], or
topic time evolution [8].

Topic models provide a straightforward way to measure
the semantic distance between documents by computing some
probabilistic divergence between the vectors characterizing the
documents in the topic model [9]. Semantic distance between
topics (and not just their co-ocurrence) can also be estimated by
comparing the vocabulary distributions of any two topics under
the topic model. However, as far as we know there is no popular
model yet which permits matching topics and documents from
different corpora. This is so, because the vocabularies used for
the documents in the heterogeneous corpora can differ with re-
spect to the included words, or just because word use frequen-
cies are corpus-dependent. In such a case, existing approaches
for measuring topic and document similarities may lead to bad
results.

For instance, imagine two datasets, one containing the tech-
nical proposals of projects submitted for evaluation, and a sec-
ond one that characterizes the evaluators using the collection
of papers authored by them. We would like to connect eval-
uators and proposals, but the heterogeneity between the docu-
ment sources suggests that a common topic model may not a
good choice. In such a case, learning separate topic models and
matching the resulting topics seems more appropriate. We can
think of many other similar situations, e.g., matching profiles
characterizing job posts to profiles of official studies character-
ized by their program descriptions, or matching patents granted
by offices from different countries and written in different lan-
guages.

There have been a few attempts to face similar matching
scenarios. After the preliminary works of [10], [11], recent con-
tributions are based on modified generative models that explic-
itly account for heterogeneity among the sources. For instance,
[12] assumes a hierarchical model in which parent topics are
matched to different topics for each corpus using explicit re-
lations among words, so that any topic can be expressed differ-
ently when particularized to each corpus. The problem with this
approach is that it does it assumes a perfect matching for each
identified topic (parent and descendants), and the fact that, since
the model is learned jointly, topics for each dataset may be less



intuitive than if differentiated topic models were optimized. An-
other recent work [13] assumes that there are unobserved links
between heterogeneous documents, that can be used to align
the vocabularies. Identifying some of these paired documents
using expert advice, a single model can be learned, obtaining
topics that are characterized by words from the two vocabular-
ies. Again, limitations of this work is that a unique topic model
is learnt for both datasets, and specialized topics may be pre-
ferred in many applications. The requirement of some expert
annotations can also be a limiting factor in many applications.

In this paper, we test different transformations of topics and
documents that derive from word dense vector representation.
This idea was firstly proposed by Bengio [14] as a way to take
advantage of neural networks to learn vector representations of
fixed dimensions for words. Concretely, we are using the one
coming from Word Embeddings, a representation suggested by
[15] which is able to capture semantic relationships between
words studying their local context, instead of the global context
considered in Topic Modeling techniques.

Some hybrid algorithms have been introduced for diverse
applications, such as lda2vec [16] or GaussianLDA [17]. The
first one learns document-level mixtures of topic vectors, com-
bining local and global contexts as they alternate Word Embed-
dings and Topic Models respectively. The second one assumes
that documents are sequences of Word Embeddings, and for that
observations are real-valued vectors.

This paper is structured as follows: Section 2 introduces no-
tation and definitions of the variables we want to relate through
our matching models, separating those coming from the topic
modeling part and the word embedding part. Section 3 spec-
ifies the different similarity distances among topics and docu-
ments from hetoregeneous corpora. Section 4 presents a first
experiment to assess the appropriateness of our approach to
match entities from heterogeneous corpora, providing a series
of significant examples to compare the outcome of the different
method. Finally, Section 5 contains the main conclusions of our
work and declares the next steps in our research: proposing a
formal generative model offering implicitly matching tools and
establishing a formalism to compare matching approaches in a
systematic way.

2. Background

In this section, we provide a very brief description of topic mod-
els and word embeddings, introducing the notation that will be
necessary in subsequent sections.

2.1. Topic Models

There are several algorithms dealing with large collections of
documents which learn topics from their word composition.
Some examples are Latent Semantic Analysis, Latent Dirich-
let Allocation or Correlated Topic Models. They differ on their
assumptions, supervision degree, etc. We will only consider
those cases in which we can define documents and topics as
distributions of topics and words respectively.

To be more specific, we will consider that we want to char-
acterize two different corpora, possibly using disjoint vocabu-
laries, for which we train independent topic models using any
algorithm whose output can be expressed in the following way:

• Documents topic distribution:
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where the superindex is used to denote the corpus, k =
1, . . . , T (1) and k′ = 1, . . . , T (2) index the topics of
the first and second topic models, T (1) and T (2) being
the number of topics in each model, whereas j and j′

similarly index the documents of each corpus.
For the probabilistic topic models we use, the topic-
document proportions constitute a consistent probability
distribution, i.e., θ(1)jk , θ
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for any documents d(1)j and d(2)j′ .

• Topics are characterized as distributions over words:
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Here, l and l′ index the words in the two vocabularies.
As before, we have that β(1)
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for any topics t(1)k and t(2)k′ .

For convenience of notation, we define vectors β(1)
k and

β
(2)

k′ as column vectors containing probabilities β(1)
lk and

β
(2)

l′k′ , respectively. Note that, since we are not assum-
ing the same vocabulary for both corpora, these topic-
defining vectors will in general be of different length for
the topics of the first and second models.

2.2. Word Embeddings

Word Embeddings as in [15] provide dense vector representa-
tion for words coming from huge vocabularies, for instance,
Wikipedia articles. This representation, which is connected
with the recent research in Deep Learning algorithms, captures
semantic information on local word context.

In a simple illustrative conception, words are represented as
BoW in the input. Then, one hidden layer is set with as many
neurons as dimensions we want for our vector. The output has
the same dimension as the input, but representing the probabil-
ity of each word to appear in the context of the input word.

Finally, setting a proper cost function, this problem con-
verges in a way that weights of the network can be seen as a
look-up table, in which the ith row corresponds to the vector
representation of the ith word. One intuition for similarity could
be that semantically close words should appear in similar con-
texts, and for that the output should be related. This is obtained
through similar weights.

This approach has proven its utility to find geometric simi-
larities between words, and the typical similarity measurement
is the cosine similarity between their vectors. In this paper, we
denote the vector representation of words using bars, e.g., w̄(1)

l ,
and w̄(2)

l′ , whereas the cosine similarity between two words in
embedding space will be denoted as W (w̄a, w̄b).



3. Similarity among Topics and Documents
from heterogeneous Corpora

In this Section, we present different strategies for computing
similarities among topics and models from heterogeneous cor-
pora.

Two models are suggested in this contribution, one of them
based on Word Embeddings. In the first model, before the
matching starts, we need to preprocess both corpuses in order to
have a common framework which considers both vocabularies.
This implies:

1. Designing a common vocabulary.

2. Create a Bag of Words (BoW) describing all documents
based on the same dictionary.

3. Assuming all topics as a disjoint union, which implies
that distributions may need to be normalized.

It is not our purpose to re-launch our topic model algorithm
with a combined corpus. Instead, we look to define similarity
measurements based on parameters learned during the two sep-
arated training processes.

The first step is intended to construct a common vocabu-
lary representation for both corpora, while reducing the overall
size vocabulary. This is important not just for a more efficient
computation, but also to remove many terms which are not par-
ticularly defining any topic, so that keeping them would just
result in added noise for the similarity estimation function.

In order to create a common vocabulary, we select the most
relevant words of each topic of both topic models. In order to do
so, we could select a fixed number of words per topic, or select
as many words as necessary so that their joint probability (for
that particular topic) exceeds a threshold value. More details on
this will be given in the experiments section.

Once the common vocabulary is constructed, we use it to
map the Bag of Word (BoW) representation of documents from
both corpora. Under this representation, each document fea-
tures consist of a word-count vector. This BoW representation
will be denoted as B̃(1)

j and B̃
(2)

j′ for the documents of the first
and second corpora, respectively.

Similarly, we map the topic vectors on this common repre-
sentation space. We denote as β̃(1)

k and β̃(2)

k′ the topic distribu-
tions over the common vocabulary, which requires also normal-
ization after some words have been discarded.

3.1. Strategy 1: High co-occurrence of words

In this first approach no Word Embeddings are used. Basic in-
tuitions will be followed when setting similarity measurements.
For instance, two topics are similar when they use the same
words in a similar proportion. Although probability divergences
may be used for this, we have found that inner products among
the vectors provide qualitatively similar results, while being
much faster to compute.
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These are by far no formal similarity/distance metrics, since
they do not follow all of the properties of non-negativity, iden-
tity of indiscernibles, symmetry and triangle inequality. How-
ever, they provide a first approach for solving the matching,

since this measurement should be higher in those cases in which
variables are non-zero – e.g., same word appearing in two dif-
ferent topics –, and also when probabilities are high – high word
occurence following previous example. Nevertheless, this mea-
surement makes no consideration at all with exclusive words
from each corpus–.

For sure, it can be argued the interest of this approach.
Equal or ”similar” vocabularies may allow the success of the
matching process. However, very heterogeneous vocabularies
will make difficult to match topics or documents when they are
defined by different words.

3.2. Strategy 2: Additive Compositionality Based on Word
Embeddings

Secondly, we consider a model in which topics and documents
from different corpuses are represented first in the same vector
space, without constructing an auxiliary common vocabulary.
This allows us to apply any vector metric to measure similarity
between documents and topics.

Inspired by [16] and [18], we propose to represent topics
as an average of word embedding vectors for the terms com-
posing the topic, each of them multiplied by its corresponding
probability parameter, i.e.:
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where t̄
(1)
k and t̄

(2)

k′ are the vector representations of the
topics of both models in the common embedding space.

With respect to documents, we can consider two different
representations, depending on whether we decide to average
over the words or the topics representing a document. In the first
case and following the example of topic vectors, a document
vector could be constructed as the average of words composing
it, considering its occurrences as frequencies summing up to
one. In the second case, the topic embedding vectors should be
averaged using the topic proportions (θ(1)jk or (θ(2)j′k′ ) as weights.

Note that under this approach the embedding space pro-
vides a common representation space for words, documents and
topics, so that similarities of any two entities of any corpora can
now be straightforwardly computed using the cosine similarity
of their corresponding representation vectors. Cosine similar-
ity is bounded between -1 and 1, with larger values indicating
higher similarity.

4. Experiments
In this set of preliminary experiments we make use of Python
utilities like Gensim, NLTK or NumPy to qualitatively com-
pare the matching between topics learned in National Science
Foundation (NSF) dataset [19], which contains title, abstract
and some metadata of project proposals. Two different corpora
were created according to the following date intervals: “1990 to
1995” and “2010 to 2016”. There are specific topic models that
consider the time evolution of topics. However, here we create
independent topic models for each subset of proposals. The dif-
ferent interval dates have been picked up in purpose, since the
main advances in Science are translated into some variations
and new introduced terms, that make vocabularies different but
with a certain amount of coincidences. Therefore, our goal here



Table 1: Corpora and Dictionary sizes

# Documents Vocab. size

Corpus 1 (1990-1995) 51 451 25 836
Corpus 2 (2010-2016) 73 165 44 761

is to study whether the proposed similarity criteria allow us to
match topics from the different corpora that, in spite of being
characterized by different terms and/or word probabilities, are
semantically close.

In the following we will refer to these corpora as Corpus
1 and Corpus 2. The number of documents and vocabulary
size of each corpus is indicated in Table 1. The number of
unique words that conform each dictionary is the result of a
pre-processing step in which lemmatization was done, as well
as word filtering in those cases which could degrade the Topic
Modeling –very frequent/unfrequent words, numbers, symbols,
etc–.

An LDA model has been trained for each corpus exploring
the number of topics in the range from 10 to 100. It is im-
portant to pick a proper value for the number of topics, since
too few topics typically result in general uninformative topics,
and a too large number may lead to extremely specific topics,
but also include redundant ones, or even topics that focus on
the generation of unimportant but frequent words [9]. Visu-
ally inspecting the models, we decided to use 40 topics, since
these models looked qualitatively adequate for our purposes. In
any case, note that the focus of our work is not on the design
or optimization of topic models, but on comparing topics from
heterogeneous models, no matter how these are obtained.

In those points where matching relies on word embeddings,
we use the english pre-trained Wikipedia embeddings coming
from Facebook Research Group [20].

One important issue, possibly a bottleneck depending on
the available computing resources, is the number of chosen
words when considering full dictionaries is not an option. In
this respect, we have explored how many unique words we need
to pick from each corpus in order to retain a predefined proba-
bility threshold on all topics. Figure 1 shows the result of such
analysis. This figure contains an implicit message: each corpus
has a lot in common with the other one, which makes sense, but
there are also a non-negligible amount of words which are im-
portant to describe the topics of just one corpus, suggesting that
methods for matching topics should be aware of such different
vocabularies.

Finally, two matching experiments were done, testing sim-
ilarity strategies 1 and 2 to link topics between Corpus 1 and
Corpus 2, due to the exploratory nature of this article. Both
strategies used as many words as needed to retain 80% of prob-
ability in every topic, which resulted in a significant vocabulary
size reduction (see Fig. 1).

Comparison of the different strategies is difficult, since we
do not have a ground truth to compare with. Therefore, we will
rely on the identification of some significant examples which
illustrate well the performance of the matching strategies. In
order to do so, Tables 2 and 3 show, for one topic of each cor-
pus, the top three matched topics using strategies 1 and 2, as
well as the corresponding estimated similarities. It is impor-
tant to realize that measurements from strategy 1 cannot be di-
rectly compared in magnitude with those coming from strategy
2. The first one is a dot product bounded by the product of
vector norms, and the second one is a cosine similarity whose

Figure 1: Number of terms needed to accumulate a certain prob-
ability in the topic model. For each probability threshold value,
the most relevant terms from each topic were selected so that
the accumulated probability is above the threshold. Vocabulary
size is then computed as the number of different terms over the
topics of the first and/or second models.

maximum value is 1. Some details about how each model oper-
ates arise, and it can be seen that:

• The lack of a formal metric description in strategy 1
leads to a measurement unable to penalize or encourage
bad matches from good matches.

• Since in strategy 1 only exact word coocurrences in-
crease the similarity score, topics with frequent terms
but no very specific thematic orientation (e.g., topic t(2)24

in Table 2 or all topics selected by strategy 1 in Table 3)
can show larger similarity to the target topic than other
topics which are semantically more aligned.

• On the other part, strategy 1 has not been distracted by
those words. It takes advantage of shared vocabulary but
is also able to reward those words that belong to a similar
context, as cosine similarity for Word Embeddings does.
This can be appreciated for instance in the second and
third topics suggested by this model, in which the scope
of the topic may be different but there is still a clear link
between the words of both sides.

Overall, we can appreciate that strategy 1 seems more co-
herent for a human spectator when scoring the similarity.

5. Conclusions and Further work
In this contribution, we have combined in an experimental way
the practical benefits of Word Embeddings jointly with the im-
plicit global context modeling of Topic Models to set the ba-
sis to a future research line. We have shown that these two
techniques may bring together more knowledge about matching
language entities than by themselves. The combination of the
learned parameters of a generative model plus word vector rep-
resentation sums details which go beyond of identifying word
coincidences. Besides, recent articles from skilled researchers
collect interest about new variations of these methods.

In spite of having already obtained interesting results, there
are many directions to extend this work. First, we need to fur-



Table 2: Matching example for topic 7 in vocabulary 1

Topic t(1)7

chemistry, reaction, chemical,
molecular, molecule, metal,
organic, program, structure,

complex

Topics selected with strategy 1 Similarity estimated by strategy 1 Similarity estimated by strategy 2

t
(2)
27

robot, control, game, object, video,
robotic, robotics, task, cybersecurity, autonomous

0.014 0.73

t
(2)
24

nsf, scientist, workshop, international, collaboration,
scientific, support, national, US, university

0.0125 0.72

t
(2)
27

problem, equation, mathematical, solution, method,
nonlinear, differential, numerical, application, partial

0.0122 0.80

Topics selected with strategy 2 Similarity estimated by strategy 1 Similarity estimated by strategy 2

t
(2)
1

chemistry, reaction, metal, catalyst,
synthesis, organic, professor, process, fuel

0.011 0.98

t
(2)
26

quantum, physic, state, electron, material,
magnetic, theoretical, property, phase, interaction

0.01 0.93

t
(2)
22

cell, protein, molecular, biological, molecule,
biology, division, structure, cellular, function

0.011 0.92

Table 3: Matching example for topic 25 in vocabulary 2

Topic t(2)25

change, ecosystem, soil,
environmental, climate,

forest, management, response,
land, community

Topics selected with strategy 1 Similarity estimated by strategy 1 Similarity estimated by strategy 2

t
(1)
35

young, investigator, award, nsf, presidential,
science, dr, polymer, enabling, objective

0.019 0.77

t
(1)
4

support, program, university, award, fellowship,
postdoctoral, month, science, graduate, center

0.017 0.76

t
(1)
19

site, university, state, reu, experience,
chemistry, ten, san, undergraduate, french

0.016 0.77

Topics selected with strategy 2 Similarity estimated by strategy 1 Similarity estimated by strategy 2

t
(1)
1

plant, forest, ecosystem, soil, growth,
effect, community, food, insect, environmental

0.011 0.94

t
(1)
33

change, ocean, climate, global, water,
data, flux, model, lake, scale

0.011 0.94

t
(1)
23

model, behavior, effect, social, understanding,
individual, change, theory, decision, test

0.007 0.9

ther study these and other similarity measurements and its prop-
erties, trying to identify which representation features codify the
most relevant information with the purpose of constructing use-
ful formal measurements. In order to compare different similar-
ity measures, an important step would be to develop objective
measurements that align with human perception, for which we
plan to carry out collective annotations. Another issue that de-
serves our attention is that of analyzing the tradeoff between
performance and scalability, which is inherent to the introduc-
tion of mechanisms for pruning the vocabularies.

In the long term, we plan to develop methods that incorpo-
rate the matching as part of a generative model prepared to deal
with heterogeneous vocabularies automatically, considering a
hidden structure built on a common word space. Hopefully,
such model would be able to model relationships on how two
heterogeneous but related vocabularies are, indeed, connected.
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